scholarly journals Investigation of the Large-Scale Atmospheric Moisture Field over the Midwestern United States in Relation to Summer Precipitation. Part II: Recycling of Local Evapotranspiration and Association with Soil Moisture and Crop Yields

2004 ◽  
Vol 17 (17) ◽  
pp. 3283-3301 ◽  
Author(s):  
Abraham Zangvil ◽  
Diane H. Portis ◽  
Peter J. Lamb
2016 ◽  
Vol 17 (8) ◽  
pp. 2191-2207 ◽  
Author(s):  
Roop Saini ◽  
Guiling Wang ◽  
Jeremy S. Pal

Abstract This study tackles the contribution of soil moisture feedback to the development of extreme summer precipitation anomalies over the conterminous United States using a regional climate model. The model performs well in reproducing both the mean climate and extremes associated with drought and flood. A large set of experiments using the model are conducted that involve swapped initial soil moisture between flood and drought years using the 1988 and 2012 droughts and 1993 flood as examples. The starting time of these experiments includes 1 May (late spring) and 1 June (early summer). For all three years, the impact of 1 May soil moisture swapping is much weaker than the 1 June soil moisture swapping. In 1988 and 2012, replacing the 1 June soil moisture with that from 1993 reduces both the spatial extent and the severity of the simulated summer drought and heat. The impact is especially strong in 2012. In 1993, however, replacing the 1 June soil moisture with that from 1988 has little impact on precipitation. The contribution of soil moisture feedback to summer extremes is larger in 2012 than in 1988 and 1993. This may be because of the presence of strong anomalies in large-scale forcing in 1988 and 1993 that prohibit or favor precipitation, and the lack of such in 2012. This study demonstrates how the contribution of land–atmosphere feedback to the development of seasonal climate anomalies may vary from year to year and highlights its importance in the 2012 drought.


2012 ◽  
Vol 13 (3) ◽  
pp. 856-876 ◽  
Author(s):  
Justin Sheffield ◽  
Ben Livneh ◽  
Eric F. Wood

Abstract The North American Regional Reanalysis (NARR) is a state-of-the-art land–atmosphere reanalysis product that provides improved representation of the terrestrial hydrologic cycle compared to previous global reanalyses, having the potential to provide an enhanced picture of hydrologic extremes such as floods and droughts and their driving mechanisms. This is partly because of the novel assimilation of observed precipitation, state-of-the-art land surface scheme, and higher spatial resolution. NARR is evaluated in terms of the terrestrial water budget and its depiction of drought at monthly to annual time scales against two offline land surface model [Noah v2.7.1 and Variable Infiltration Capacity (VIC)] simulations and observation-based runoff estimates over the continental United States for 1979–2003. An earlier version of the Noah model forms the land component of NARR and so the offline simulation provides an opportunity to diagnose NARR land surface variables independently of atmospheric feedbacks. The VIC model has been calibrated against measured streamflow and so provides a reasonable estimate of large-scale evapotranspiration. Despite similar precipitation, there are large differences in the partitioning of precipitation into evapotranspiration and runoff. Relative to VIC, NARR and Noah annual evapotranspiration is biased high by 28% and 24%, respectively, and the runoff ratios are 50% and 40% lower. This is confirmed by comparison with observation-based runoff estimates from 1130 small, relatively unmanaged basins across the continental United States. The overestimation of evapotranspiration by NARR is largely attributed to the evapotranspiration component of the Noah model, whereas other factors such as atmospheric forcings or biases induced by precipitation assimilation into NARR play only a minor role. A combination of differences in the parameterization of evapotranspiration and in particular low stomatal resistance values in NARR, the seasonality of vegetation characteristics, the near-surface radiation and meteorology, and the representation of soil moisture dynamics, including high infiltration rates and the relative coupling of soil moisture with baseflow in NARR, are responsible for the differences in the water budgets. Large-scale drought as quantified by soil moisture percentiles covaries closely over the continental United States between the three datasets, despite large differences in the seasonal water budgets. However, there are large regional differences, especially in the eastern United States where the VIC model shows higher variability in drought dynamics. This is mostly due to increased frequency of completely dry conditions in NARR that result from differences in soil depth, higher evapotranspiration, early snowmelt, and early peak runoff. In the western United States, differences in the precipitation forcing contribute to large discrepancies between NARR and Noah/VIC simulations in the representation of the early 2000s drought.


2011 ◽  
Vol 12 (5) ◽  
pp. 1086-1099 ◽  
Author(s):  
Rui Mei ◽  
Guiling Wang

Abstract This study examines the impact of sea surface temperature (SST) and soil moisture on summer precipitation over two regions of the United States (the upper Mississippi River basin and the Great Plains) based on data from observation and observation-forced model simulations (in the case of soil moisture). Results from SST–precipitation correlation analysis show that spatially averaged SST of identified oceanic areas are better predictors than derived SST patterns from the EOF analysis and that both predictors are strongly associated with the Pacific Ocean. Results from conditioned soil moisture–precipitation correlation analysis show that the impact of soil moisture on precipitation differs between the outer-quartiles years (with summer precipitation amount in the first and fourth quartiles) and inner-quartiles years (with summer precipitation amount in the second and third quartiles), and also between the high- and low-skill SST years (categorized according to the skill of SST-based precipitation prediction). Specifically, the soil moisture–precipitation feedback is more likely to be positive and significant in the outer-quartiles years and in the years when the skill of precipitation prediction based on SST alone is low. This study indicates that soil moisture should be included as a useful predictor in precipitation prediction, and the resulting improvement in prediction skills will be especially substantial during years of large precipitation anomalies. It also demonstrates the complexity of the impact of SST and soil moisture on precipitation, and underlines the important complementary roles both SST and soil moisture play in determining precipitation.


2020 ◽  
Vol 10 (5) ◽  
pp. 20190065 ◽  
Author(s):  
William J. Schmelz ◽  
Gal Hochman ◽  
Kenneth G. Miller

We model the costs of carbon capture and storage (CCS) in subsurface geological formations for emissions from 138 northeastern and midwestern electricity-generating power plants. The analysis suggests coal-sourced CO 2 emissions can be stored in this region at a cost of $52–$60 ton −1 , whereas the cost to store emission from natural-gas-fired plants ranges from approximately $80 to $90. Storing emissions offshore increases the lowest total costs of CCS to over $60 per ton of CO 2 for coal. Because there apparently is sufficient onshore storage in the northeastern and midwestern United States, offshore storage is not necessary or economical unless there are additional costs or suitability issues associated with the onshore reservoirs. For example, if formation pressures are prohibitive in a large-scale deployment of onshore CCS, or if there is opposition to onshore storage, offshore storage space could probably store emissions at an additional cost of less than $10 ton −1 . Finally, it is likely that more than 8 Gt of total CO 2 emissions from this region can be stored for less $60 ton −1 , slightly more than the $50 ton −1 Section 45Q tax credits incentivizing CCS.


2016 ◽  
Vol 32 (4) ◽  
pp. 383-401 ◽  
Author(s):  
Nari Kim ◽  
Jaeil Cho ◽  
Sungwook Hong ◽  
Kyung-Ja Ha ◽  
Ryosuke Shibasaki ◽  
...  

2016 ◽  
Vol 61 (5) ◽  
pp. 857-867 ◽  
Author(s):  
Chasity Henson ◽  
Patrick Market ◽  
Anthony Lupo ◽  
Patrick Guinan

2020 ◽  
Vol 17 (9) ◽  
pp. 2647-2656 ◽  
Author(s):  
René Orth ◽  
Georgia Destouni ◽  
Martin Jung ◽  
Markus Reichstein

Abstract. Soil moisture droughts have comprehensive implications for terrestrial ecosystems. Here we study time-accumulated impacts of the strongest observed droughts on vegetation. The results show that drought duration, the time during which surface soil moisture is below seasonal average, is a key diagnostic variable for predicting drought-integrated changes in (i) gross primary productivity, (ii) evapotranspiration, (iii) vegetation greenness, and (iv) crop yields. Drought-integrated anomalies in these vegetation-related variables scale linearly with drought duration with a slope depending on climate. In arid regions, the slope is steep such that vegetation drought response intensifies with drought duration, whereas in humid regions, it is small such that drought impacts on vegetation are weak even for long droughts. These emergent large-scale linearities are not well captured by state-of-the-art hydrological, land surface, and vegetation models. Overall, the linear relationship of drought duration versus vegetation response and crop yield reductions can serve as a model benchmark and support drought impact interpretation and prediction.


Sign in / Sign up

Export Citation Format

Share Document